
Unless otherwise stated, all content is under a Creative Commons AttributionShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

GPIO Workshop

G
PIO is the General Purpose Input / Output system that enables

the Pi to interact with the physical world. The GPIO pins are

the bank of 40 pins that runs along the side of the Pi. With these

you can control robots to take over the world!

GPIO Pin Numbering
To the right you can see how the pins are laid out. The

numbers inside the circles are the physical pin numbers.

However, these are not used when programming. The

tags to the left and right are the "Broadcom" numberings

(Broadcom are the company that makes the Pi's pro

cessor).

These are how the Raspberry Pi sees the pins, and it is

these numbers you'll be using to control the pins in

Scratch and, later on, Python.

Lighting an LED
Next, take the following components from your CamJam

#1 Kit (the smaller tin):

1. A breadboard

2. An LED (any colour, any size)

3. A 330 ohm resistor (the strip of three resistors in the

CamJam #1 kit are all 330 ohm; the lone resistor is 4.7

kiloohm)

Connect these components as show in the diagram be

low. The LED should light up once the circuit is complete.



Unless otherwise stated, all content is under a Creative Commons AttributionShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Now, change your circuit so that instead of being connected to

the 3v3 power pin, it is connected to the GPIO17 pin instead.

The LED should remain unlit when connected to GPIO17 because

this pin is programmable and we haven't yet switched it "on". Next,

we're going to use Scratch to control that pin...

GPIO Workshop

Lighting LEDs from Scratch
To begin, start Scratch by selecting Menu > Programming > Scratch. After a short delay you should

see a large window with four distinct sections appear. Maximize this window so it fills the

screen.

Warning
If you see more than one version of

Scratch in the Programming menu

(e.g. ScratchGPIO7), this means

you've got an old version. You'll need

to upgrade before continuing.



Unless otherwise stated, all content is under a Creative Commons AttributionShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

With the GPIO server started, we can use "broadcast" blocks with

special messages to control the GPIO pins. The messages that you

can use are listed in the table below:

GPIO Workshop

Message Example Action

configXoutput config17output Configures GPIO17 as an output

configXinput config26input Configures GPIO26 as an input

gpioXon gpio17on Switches GPIO17 on (must be configured as

output)

gpioXoff gpio17off Switches GPIO17 off (must be configured as

output)

gpioX gpio16 Reads the state of GPIO16 in a sensor block

(must be configured as input)

Set up the following blocks in the script area in Scratch (drag and drop from the blocks

palette on the left; all the blocks you'll need are under Control):

Now when you click on the green flag at

the top right (to run your script), your LED

should blink!

A Light Emitting Diode (LED) is a type of

diode that, when connected correctly,

produces light. Being a type of diode, it

only permits current to flow one way

through itself. This means that power

must flow from the anode (the positive

pin) to the cathode (the negative

pin).

The anode can be identified as the

longer leg of the LED (the cathode

has a shorter leg). The cathode can

also be found by feeling the LED body

for a slightly flattened edge (as seen in

the diagram on the right).

One thing to remember is that a LED must

have a resistor in series to prevent too

much current from destroying the LED.

What is an LED?

Extras
Can you alter your script to:

• Make the LED flash faster?

• Flash randomly?



Unless otherwise stated, all content is under a Creative Commons AttributionShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Controlling traffic from Scratch
One LED is all well and good, but it's no use for controlling traffic!

Add a couple more LEDs to your breadboard with a similar circuit

to the red, but shifted down a bit:

GPIO Workshop

Leave some space at the bottom of your board, as shown in the diagram above. You'll

need it later!

If you've followed the wiring diagram above, your yellow LED should be connected to

GPIO27, and your green LED will be connected to GPIO22. Below is an extended script that

configures all the GPIO pins we've used as outputs. Can you extend it to flash the traffic

lights sequence (red, red+yellow, green, yellow, and back to the start)?



Unless otherwise stated, all content is under a Creative Commons AttributionShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Reading Buttons from Scratch
Next we're going to add a button to our breadboard and make

the LED react to the button. Firstly, wire the button from your

CamJam #1 Kit to the Pi as shown below:

You can now switch to the "sensing" blocks (in blue), and at

the bottom find the "sensor value" block. Select "gpio16" in

the dropdown list and then click on the checkbox to the left

of the block. You should see "gpio16 sensor value" appear in

the stage at the top right.

GPIO Workshop

If you press the button on your breadboard (assuming everything is wired correctly) you'll

see the "gpio16 sensor value" changing in the stage.

Next, set up the following trivial script in Scratch and run it. This will configure GPIO16 as an

input. We need to do this prior to using "sensing" blocks with the button:



Unless otherwise stated, all content is under a Creative Commons AttributionShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Finally, you can now construct the Scratch blocks shown below.

When you click the green flag to run the script you should find that

the red LED lights up in response to pressing the button.

GPIO Workshop

LEDs in Python
We can also control LEDs and read the state of buttons in the Python programming

langauge. Save your work in Scratch, if you wish, and then close it down. Leave your bread

board wired to the Pi as it is (with the LED connected to GPIO17, and the button to GPIO16).

Start the Python 3 environment by selecting Menu > Programming > Python 3. Once the Python

environment appears, select File > New File to start a new Python script and save the empty

file as something suitable like gpio_workshop. py. Now enter the following script:

When you select Run > Run Module (or press F5) you should

see the LED blinking as it did with Scratch. You may wish

to note the similarities between this script and the Scratch

script for blinking the LED.

To stop your script at any time, select Shell > Restart Shell in

the main Python window (or press Ctrl+F6 on the key

board).

from gpiozero import LED, Button

from time import sleep

led = LED(17)

while True:

led. on()

sleep(1)

led. off()

sleep(1)

Extras
Can you alter your script to:

• Make the LED flash faster?

• Flash randomly?

• Flash two LEDs?



Unless otherwise stated, all content is under a Creative Commons AttributionShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

In Python there's an even easier way to blink the LED: using the

blink method. This takes two parameters: the time to remain on

and the time to remain off. The following script uses this method

instead.

Note that instead of using an infinite loop which will cause the

script to run until stopped, this version executes the blink method (which runs in the back

ground) then uses pause to wait until the script is stopped:

Buttons in Python
As in Scratch, we use a loop to read the state of a button (from the is_pressed attribute)

and light an LED in response:

Again, compare this script to the Scratch script that lights the LED when the button is pushed.

However, we can also use an easier method in Python by connecting events (e.g.

when_pressed) to handlers (e.g. on and off):

from gpiozero import LED, Button

from signal import pause

led = LED(17)

led. blink(1, 1)

pause()

GPIO Workshop

from gpiozero import LED, Button

led = LED(17)

btn = Button(16)

while True:

if btn. is_pressed:

led. on()

else:

led. off()

from gpiozero import LED, Button

from signal import pause

led = LED(17)

btn = Button(16)

btn. when_pressed = led. on

btn. when_released = led. off

pause()




