
Unless otherwise stated, all content is under a Creative Commons Attribution­ShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Explorer HAT Workshop

This worksheet will guide you through making a game with a mo­

torised wheel which will rotate for a random amount of time,

before stopping to select a question / person from a wheel.

Introduction
The Explorer HAT Pro is an add­on board from the lovely people at

Pimoroni. The board enables anyone to easily learn physical com­

puting using Python. Physical computing is an exciting and innov­

ative area of technology which can provide children with a

massive incentive to learn computing.

The board costs £18 (for the pro version; the regular is £10) and has a

number of input and output options including capacitive touch

pads, coloured LEDs, and motor drivers which we'll be using in this

worksheet. One of the lovely people from

Pimoroni

HAT simply stands for "Hardware Attached on Top". It

is a specification developed by the Pi Foundation to

make development and use of add­on boards for

the Raspberry Pi easier. HATs are designed to identi­

fy themselves to the Pi automatically, configuring the

GPIO pins appropriately for their features.

Other available HATs:

• GPS HAT ­ for position/time data

• DC & Stepper motor HAT ­ control all your motors

• PiTFT HAT ­ add a mini­TFT display to your Pi

• Unicorn HAT ­ a multi­coloured LED grid

• Astro Pi HAT ­ sensors for space exploration!

Capacitive

crocodile clip

pads
Capacitive touch

pads

Coloured LEDs

Analog inputs

(pro only)

Motor drivers

(pro only)

5V tolerant inputs

and outputs

What is a HAT?



Unless otherwise stated, all content is under a Creative Commons Attribution­ShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Explore!
Start Python by selecting Menu > Programming >
Python 3. When Python appears, type import explorerhat in the console. You should see

"Explorer HAT Pro detected!" appear. If you do not, the most likely cause is that the Explorer

HAT is not seated correctly on the Pi.

With the library loaded, you can start to play with the HAT. Try the following commands to

control the red LED:

The two parameters to the blink function give the "on" time and "off" time respectively.

There's another function called pulse which takes four parameters: fade­in time, fade­out

time, on time, and off time. Try the following:

You can also control all the lights at once by leaving out the

colour:

Installation
First, shut down your Raspberry Pi; installing add­on boards like the

Explorer HAT Pro can damage the Pi if performed while the Pi has

power. Firmly attach your Explorer HAT Pro to the GPIO pins on the

edge of the board, ensuring that the HAT covers the Pi.

Explorer HAT Workshop

Hint
Try and ensure that the mounting

holes on the Pi and the Explorer HAT

line up when viewed from directly

above. If they don't, the chances

are that the pins are mis­aligned.

>>> explorerhat. light. red. on()

>>> explorerhat. light. red. off()

>>> explorerhat. light. red. toggle()

>>> explorerhat. light. red. blink(0. 5, 0. 2)

>>> explorerhat. light. blue. pulse(0. 2, 0. 2, 0. 5, 0. 2)

>>> explorerhat. light. on()

>>> explorerhat. light. pulse(0. 2, 0. 2, 0. 4, 0. 3)

Extras
Can you get the four lights

pulsing in sequence? Hint:

you can write a script to do

this using time. sleep to

pause between commands.



Unless otherwise stated, all content is under a Creative Commons Attribution­ShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Build!
Now that you've got your Explorer HAT working it's time to build

something with it. You're going to make a game that randomly

chooses a selection from a wheel.

1. Cut out your selection wheel and selector arrow from some coloured card

2. Affix the wheel to the motor, and secure the motor to the desk using blu­tack.

3. Connect your motor to the Motor 1 pins on the Explorer HAT Pro

Explorer HAT Workshop



Unless otherwise stated, all content is under a Creative Commons Attribution­ShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Explorer HAT Workshop

Code!
Let's get coding! Use File > New Window to create a new program and

save it as wheel_of_fortune. py. Type the following code into your

program:

As before we've imported the explorerhat module. We've also imported some functions

from other modules that we're going to need: sleep (which waits for the specified number

of seconds) and randint (which returns a random integer number within the specified

range).

Now we need to define our own function! This function will be called whenever the first ca­

pacitive­touch button on the Explorer HAT Pro is pressed. The function takes two arguments:

channel and event . These are passed to any function which responds to these buttons, and

indicate which button is involved and what happened (whether the button was pressed

or released). We're not going to use them here though.

Within the function we've created a variable called duration which contains a random in­

teger. We print the duration for the purpose of debugging (this is a very common and use­

ful trick!).Then we turn on the power to motor 1 on the Explorer HAT Pro. Next, we wait for

duration seconds to pass (while the motor is running), and finally stop the motor.

Finally, we need to tell the Explorer HAT Pro to call our function whenever capacitive­touch

button one is pressed. This requires one final line of code (this is not part of our function so

make sure it's not intended):

Now run your code, and touch button one on the Explorer HAT Pro. If everything is working

correctly, you should see a number printed on the Python console, and the wheel should

turn for that number of seconds!

import explorerhat

from time import sleep

from random import randint

def wheel(channel, event) :

duration = randint(1, 10)

print(duration)

explorerhat. motor. one. forward(100)

sleep(duration)

explorerhat. motor. one. stop()

explorerhat. touch. one. pressed(wheel)



Unless otherwise stated, all content is under a Creative Commons Attribution­ShareAlike 4.0 International License.

All resources can be found at https://github.com/waveform80/picademy_worksheets/

Troubleshooting
Firstly, check that your code matches the complete listing below,

including indentation, and capitalisation.

The next thing to check is the wiring. Ensure that the motor is connected to the +/­ pins of

motor one. Note that you cannot mix and match motor pins (i.e. if the motor is connected

to the +pin of motor one, and the ­pin of motor two, it won't work).

Extensions
You can use backward instead of forward to make the motor run in the opposite direction.

You can also use numbers between 0 and 100 to indicate the speed the motor should turn

at (these simply represent a percentage of the motor's full speed).

• Can you flash the LEDs while the motor is turning?

• Can you time the rotation of the motor to land the wheel on specific selections?

• Can you set one button to start the motor running and another to stop it?

Why do I need a motor driver?
The Pi's GPIO ports can only supply a few mA of cur­

rent (16mA max). Attempting to draw more than this

will damage the Pi! Motors typically require at least

400mA to start spinning (although they draw far less

after startup). Thus a motor driver chip permits con­

trol of a high­current supply (like the Pi's 5V rail, or an

external supply) from a low­current control signal (like

a Pi's GPIO ports).

Motor drivers are often H­bridge circuits (shown in the

diagram to the right), capable of driving a motor for­

wards or backwards (as well braking or free­running

motors in certain cases).

Motor runs "left"

Motor runs "right"

Im
a

g
e
©

2
0

0
6

C
y
ri
l
B

u
tt

a
y

v
ia

W
ik

ip
e

d
ia

(C
C

­B
Y

S
A

3
.0

)

Explorer HAT Workshop

import explorerhat

from time import sleep

from random import randint

def wheel(channel, event) :

duration = randint(1, 10)

print(duration)

explorerhat. motor. one. forward(100)

sleep(duration)

explorerhat. motor. one. stop()

explorerhat. touch. one. pressed(wheel)




